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1. INTRODUCTION
Aerosol particles play a crucial role in the study of earth and
climate systems as they influence the radiative and thermo-
dynamic properties of the atmosphere [1]. This is particu-
larly relevant in the warm tropical environment of Southeast
Asia (SEA), where there are still many gaps in knowledge
and large uncertainties regarding the relationship between
aerosol radiative properties and the atmosphere’s thermody-
namic properties. Moreover, the SEA region is also known
to be vulnerable to climate impacts [2]. In order to bet-
ter understand the SEA climate system, the 7-Southeast
Asian Studies (7SEAS) mission was established with the
objective of facilitating interdisciplinary research into the
integrated SEA aerosol environment via grass roots style
collaboration [3]. In particular, 7-SEAS uses ground-based,
remotely-sensed, and modeled data sets to study the aerosol-
environment interaction in the region of Java through the
Malay Peninsula and SEA to Taiwan.

One of the key challenges in the study of aerosols is de-
termining their types, which is usually done using chemi-
cal sampling and analysis. However, these methods can be
expensive and time-consuming, and there are many places
where chemical sampling data are limited or unavailable. In
such cases, remote sensing provides an advantage as it al-
lows for the continuous gathering of large amounts of data
with low maintenance. One widely used remote sensing sys-
tem in the 7-SEAS mission is NASA’s Aerosol Robotic Net-
work (AERONET) [4]. AERONET is a global network of
ground-based sun photometers that can continuously mea-
sure aerosol optical properties such as absorption, scatter-
ing, optical depth, and aerosol size distributions.

In this study, we will focus on AERONET data from the
Manila Observatory which has available data starting from
January 2009. This long-term data will allow us to examine
the temporal variability and seasonality of aerosol. Choosing
Manila Observatory is meant to be a proof of concept, and
the analysis presented here can be extended to other sites
as well.

2. OBJECTIVES
The main objective of this study is to create a model that
can classify aerosols using their optical properties. Using
this classifier, we aim to accurately identify the types of
aerosols present at the Manila Observatory and understand
their temporal variability. In addition, we aim to compare
our results with known events and trends, such as examin-

ing how the distribution of aerosol types changed during the
COVID-19 pandemic which might show the relationship be-
tween aerosol properties (e.g. pollution levels) and human
activities.

3. METHODOLOGY
For this project, we will focus on supervised classification,
relying on domain knowledge to label some of the train-
ing data. For example, we may label aerosols from highly-
urbanized cities like Beijing as ”urban dust” (a mixture of
dust and smoke particles) or label aerosols from areas with
agricultural biomass burning processes, such as Alta Flo-
resta, Brazil during harvest season, as ”biomass burning
white smoke.” Once we have labeled the training data, we
can explore different classification techniques.

3.1 Data Description
3.1.1 AERONET
NASA’s AERONET is a global network of sun photome-
ters that continuously measure aerosol optical properties.
These photometers, known as the CIMEL Electronique CE-
318 sun-sky radiometers, are installed at various locations
around the world and have a 1.2° field of view and 2 de-
tectors for measuring direct sun and sky radiance. The sun
photometers can operate in two modes: direct sun and sky
radiance. Direct sun measurements are performed every 15
minutes at multiple wavelengths, while sky radiance mea-
surements are taken at various scattering angles to deduce
particle size distribution and phase functions.

AERONET data is available in three quality levels: 1.0, 1.5,
and 2.0. Level 1.0 data is raw and unprocessed, level 1.5 data
is cloud-screened using a specific algorithm [5], and level
2.0 data is both cloud-screened and quality-assured through
instrument tests and manual inspection [6]. Level 2.0 data
is considered to have the best quality and will thus be used
for this project.

3.1.2 Aerosol Optical Properties
Aerosol Optical Thickness (AOT) is a measure of the extinc-
tion of light due to aerosol. AERONET sun photometers cal-
culate AOT using the spectral extinction of the direct beam
radiation according to the Beer-Lambert-Bouguer Law:

Vλ = V0λd
2e−τλm · ty (1)



where V is the digital voltage, V0 is the extraterrestrial volt-
age, m is the optical air mass (which is approximately the
secant of the zenith angle), τ is the total optical depth, λ
is the wavelength, d is the ratio of the average to the ac-
tual Earth-Sun distance, and ty is the transmission of the
absorbing gasses. The AOT (τa) is the τ minus the absorp-
tion by atmospheric gasses, water vapor, and the effects of
Rayleigh scattering [4]:

τa = τ − τH2O − τRayleigh − τO3 − τNO2 − τCO2 − τCH4 (2)

The Angstrom Exponent (AE) can be derived from the AOT
per wavelength. AE is defined to be the slope of the AOT
with respect to the wavelength in a logarithmic scale:

α = −d ln τa
d lnλ

(3)

where α is the Angstrom Exponent, τa is the AOT, and λ
is the wavelength [7]. AE is a particle size indicator where
AE < 1 suggests the dominance of coarse aerosols while
AE ≥ 2 suggests the dominance of fine aerosols. The deriva-
tive of AE with the wavelength, α′, is also a good indicator
for particle size where α′ > 0 suggests the dominance of
fine aerosols and α′ < 0 suggests the dominance of coarse
aerosols. α′ is obtained from the second order polynomial
fit of AOT vs wavelength in log-log space [8].

More parameters that describe particle size and absorption
can be derived using the inversion algorithm. The inversion
algorithm was developed using almucantar and principal
plane measurements as inputs in a radiative transfer model
[9], and was further developed in subsequent works [10, 11,
12, 13, 14]. The inversion algorithm assumes that aerosol
particles are partitioned into spherical and non-spherical
components, and the percentage of spherical particles is
denoted by the asymmetry parameter (g(λ)). In addition
to sphericity, the algorithm also retrieves the volume con-
centration (CV ), volume radius (rV ), and effective radius
(reff ), along with their corresponding standard deviations
(σ). The volume particle size distribution (dV (r)/d ln r) is
also retrieved for 22 logarithmically equidistant points (ri)
in the range 0.05µm ≤ r ≤ 15µm. The single scattering
albedo (ω(λ)) retrieval, which assumes that a sunbeam is
only reflected off a single particle, is the ratio of the scatter-
ing efficiency to the extinction efficiency. The real (n(λ)),
imaginary (k(λ) refractive indices, and the single scattering
albedo describe the scattering and absorbing properties of
aerosols. It should be noted that retrievals of the complex
refractive index (n+ ik) require AOT440 ≥ 0.4.

3.1.3 Aerosol Reference Clusters
The reference clusters used in this study are based on previ-
ous research [12, 15, 16, 17]. There are a total of 6 reference
clusters, each of which represents a distinct class of aerosol
as shown in Table 1.

3.2 Classification
3.2.1 Data Preparation

Since the goal is to classify aerosol types, it was necessary
to consider only features that do not depend on quantity.
Therefore, features such as AOT were excluded. The se-
lected features included various optical properties of the
aerosols at different wavelengths, such as the single scatter-
ing albedo, refractive index, asymmetry factor, and Angstrom
exponent.

There are many null values for inversion products in the
data due to the requirement that AOT440 > 0.4 (as men-
tioned earlier). Additionally, cloudy and rainy weather can
make it difficult for the instrument to make accurate mea-
surements, leading to further missing values. To address
this issue, the IterativeImputer from the scikit-learn library
was used with a Bayesian Ridge estimator to impute the
missing values. This method uses an iterative approach to
estimate the missing values by fitting a model to the ob-
served data and then using the model to predict the missing
values. The imputed values are then used to fit the model in
the next iteration, until the imputed values converge. This
can be an effective way to fill in missing values in the data
while maintaining the underlying relationships between the
features [18].

Finally, feature selection was done by removing features
with high multicollinearity using the variance inflation fac-
tor (VIF). The VIF is a measure of how much the variance
of a given model coefficient is inflated due to collinearity
with other variables [19]. The built-in VIF method, called
variance inflation factor, from the statsmodels library was
used to identify and remove highly correlated features. The
process of removing high-VIF features was done iteratively,
by first computing the VIFs for all variables, then removing
the feature with the highest VIF, and recomputing the VIFs
until all VIFs were less than 10.

The resulting preprocessed dataset was then split into train-
ing and validation sets, with the Manila Observatory data
reserved as the test set. It is important to note that the
IterativeImputer and VIF computation were both trained
on and applied to the training set first. After these steps
were completed on the training set, the trained IterativeIm-
puter and the selected features from VIF were then applied
to the test and validation sets as well. The resulting pro-
cessed datasets ended up with 12 features. After preparing
the data, three classifier models were trained, and the best
performing model will later be used for the test set. These
models are the Mahalanobis Classifier, k-Nearest Neighbors,
and Naive Bayes, which are discussed in more detail in the
following sections.

3.2.2 Mahalanobis Classifier
The Mahalanobis classifier (MC) is a particular kind of clus-
tering method that uses the Mahalanobis distance to mea-
sure the distance of a point to each cluster. The Maha-
lanobis distance is defined as:

dM (x) =
√

(x− µ)TΣ−1(x− µ) (4)

where x is the point being considered, and µ and Σ are the
mean and covariance matrix of the cluster. A test sample is



Class Name Abbreviation Site Period

Mineral Dust MD Solar Village, Saudi Arabia Mar-Jul (1999-2015)
Polluted Dust PD Beijing, China Whole Year (2001-2013)

Biomass Burning, Dark Smoke BB-D Mongu, Nigeria Aug-Nov (1995-2009)
Biomass Burning, White Smoke BB-W Alta Floresta, Brazil Aug-Oct (1995-2013)

Urban/Industrial (Developed Economy) UI GSFC, Maryland, USA Jun-Sept (1993-2013)
Urban/Industrial (Developing Economy) UI-D Chen Kung Univ., Tainan, Taiwan Whole Year (2002-2014)

Table 1: Aerosol classes used as reference clusters in this study and the AERONET site they were taken from.

then classified into the cluster from which it has the smallest
Mahalanobis distance. The included mahalanobis.py script
contains the implementation used in this project.

3.2.3 k-Nearest Neighbors
The k-nearest neighbor classifier (KNN) works by finding
the k points in the training set that are closest (using some
specified distance metric) to the point being classified and
then assigning the point to the majority class of those k
points. In this project, the KNeighborsClassifier from the
scikit-learn library was used [18].

In addition, to obtain an improved KNN model, the num-
ber of neighbors was subject to hyperparameter tuning along
with grid search in order to maximize model performance.
The built-in GridSearchCV from the scikit-learn library was
used to evaluate through several choices of number of neigh-
bors, which resulted in improved overall model performance.

3.2.4 Naive Bayes Classification
Finally, the Naive Bayes classifier (NB) is a simple classifier
based on Bayes theorem:

P (y|x1, x2, ..., xn) =
P (y)

∏n
i=1 P (xi|y)∏n

i=1 P (xi)
(5)

where x1, x2, ..., xn are the features of some sample point x
and y is the class label. It is called ”naive” because of its as-
sumption that features are independent from one another.
In this project, the GaussianNB implementation from the
scikit-learn libary was used [18]. And similar to the KNN
model, GridSearchCV was also used to fine tune a hyper-
parameter, namely the variance smoothing factor used to
ensure calculation stability.

4. EXPERIMENTAL RESULTS
Table 2 shows the performance of the three classifiers on
the validation set. It can be seen that the k-nearest neigh-
bor classifier (KNN) performed the best with an accuracy
98.1%, while the naive Bayes classifier (NB), having a 72.8%
accuracy was the worst model.

The confusion matrices in Figure (1) show the performance
breakdown of each of the three models by how accurately
they were able to classify the different types of aerosols.
The x-axis represents the predicted labels while the y-axis
represents the true label. Hence, a high off-diagonal value
indicates that the model tends to “confuse” together certain
classes of aerosols. For example, NB (fig. 1c) predicted 616
instances of PD as UID. In line with the results in Table 2,
the best performer, KNN, has the fewest off-diagonal counts,
while the worst model, NB, has the most.

(a) Mahalanobis Classifier (MC)

(b) k-Nearest Neighbors (KNN)

(c) Naive Bayes (NB)

Figure 1: Confusion matrices for the three classifier models.



Accuracy Precision (Macro) Precision (Weighted) Recall (Macro) Recall (Weighted) F1 Score (Macro) F1 Score (Weighted)
MC 0.812 0.806 0.820 0.796 0.812 0.799 0.814
KNN 0.981 0.979 0.982 0.982 0.981 0.980 0.981
NB 0.727 0.695 0.734 0.711 0.728 0.695 0.723

Table 2: A comparison of the performance metrics for the three classifier models.

Figure 2: Heatmap of predicted aerosol types in the Manila
Observatory data using KNN.

Aerosol Type Pre-COVID-19 (%) COVID-19 (%)
BBD 3.378 0.000
BBW 6.947 5.882
MD 7.075 5.882
PD 50.988 23.529
UI 13.384 50.000
UID 18.228 14.706

Table 3: Aerosol Types Before and During COVID-19.

The KNN model was used to predict the aerosol types in
the test set (i.e. data from Manila Observatory) since it was
the best-performing model out of the three. The predicted
aerosol types are displayed as a heatmap in Figure 2. The
heatmap shows the counts of the predicted aerosol types
observed in each month, with the x-axis representing the
actual count of aerosol types and the y-axis representing the
months. Finally, we also present table 3 which compares
the aerosol composition before and during the COVID-19
pandemic.

5. ANALYSIS AND DISCUSSION OF RE-
SULTS

As shown earlier, the k-nearest neighbor (KNN) classifier
was found to be the best performing model out of the three
models tested in this study. This is likely due to the fact
that KNN is a non-parametric method, meaning it does not
make assumptions about the underlying data distribution.
In comparison, both the Mahalanobis classifier (MC) and
Naive Bayes (NB) are parametric models, which may have
led to poorer performance. The KNN model was able to
accurately classify the different types of aerosols present at
the Manila Observatory, as demonstrated by its high overall
accuracy and low off-diagonal counts in the confusion matrix

(Figure 1). In contrast, the MC and NB models had lower
overall accuracy and higher off-diagonal counts, indicating a
greater tendency to confuse different aerosol classes. Over-
all, the results of this study suggest that KNN is a promising
model for classifying aerosols based on their optical proper-
ties.

The results of the pivot table, shown in Figure 2, reveal
the monthly distribution of aerosol types as measured by
the AERONET instrument at the Manila Observatory. It
can be seen that the majority of aerosols present are of
the PD, UI, and UID types, with relatively fewer occur-
rences of BBD, BBW, and MD. These results are consistent
with the fact that the site is located in an urban area since
PD, UI, and UID are typically associated with vehicular ex-
haust or industrial activities. Interestingly, the distribution
of aerosol types exhibits some seasonal variation, with the
highest counts of PD, UI, and UID aerosols observed dur-
ing the dry season (around January to May). However, it
must be noted that the low observation counts during the
wet season is due to the instrument not being able to collect
data when it is raining or when it is too cloudy.

Finally, table 3 shows the percentage of aerosol types be-
fore and during COVID-19. It can be seen that, during
the COVID-19 period, there was a decrease in the percent-
age of PD aerosols and an increase in the percentage of UI
aerosols. This shift in trend may be due to the changes in
human activity during COVID-19. In terms of optical prop-
erties, PD aerosols are typically coarser and less reflective
compared to UI aerosols. Thus, the decrease in the pro-
portion of PD may indicate a decrease in sources of course
aerosols such as construction or transportation during the
pandemic. On the other hand, the increase in UI aerosols
may suggest some increase in sources of fine aerosol such as
fires or industrial activities (it must also be noted that fine
aerosols can be transported over longer distances compared
to coarse aerosols). Further research is needed to confirm
these hypotheses.

6. CONCLUSION
In this paper, we have demonstrated the predictive capabil-
ities of classifying an aerosol’s type through data from its
optical properties. Through NASA’s AERONET network,
data on an aerosol’s optical properties, such as its refractive
index and single scattering albedo, were taken and matched
with labels of aerosol types generated from geographic do-
main knowledge. This study limits its scope of study to data
taken from the Manila Observatory in the Philippines.

Three supervised learning algorithms were then employed
to classify six (6) aerosol types: the Mahalanobis (MC),
k-nearest neighbors (KNN), and Naive Bayes (NB) classi-
fiers. With an accuracy of 98.1%, the KNN classifier was
shown to perform best in classifying different aerosol types,
and is consistent with six other performance metrics. The



Mahalanobis classifier performed best after KNN (accuracy:
81.2%), and NB yielded the worst performance scores among
the three (accuracy: 72.7%). With this, the KNN classifier
was chosen as the best classifier over MC and NB, and was
finally used to predict aerosol types of test data taken from
the Manila Observatory. The aerosol types predicted were
used to create aerosol distributions around the Manila Ob-
servatory: PD, UI, and UID aerosols were found to be the
most abundant. A comparison between aerosol compositions
pre-COVID 19 and during COVID-19 was also conducted.
It was shown that PD levels were significantly reduced dur-
ing the onset of the COVID-19 period.

For future work, alternative techniques on multiclass classi-
fication may be explored, such as tree-based algorithms and
artificial neural networks. Additionally, to utilize the full
capability of AERONET’s vast range of data, the scope of
the study may be extended to other regions of the world.
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