
Uncovering Patterns in the LendingClub Dataset: An
Exploration of Unsupervised and Supervised Techniques

A Team Project Report for AI 221

Hans Jarett Ong
University of the Philippines Diliman

hjong@up.edu.ph

Rossjyn Fallorina
University of the Philippines Diliman

rcfallorina1@up.edu.ph

1. INTRODUCTION
The LendingClub is a US-based tech company that offers a
peer-to-peer lending platform. The company was founded in
2006 and had its IPO in 2014 – the largest tech IPO of that
year. Their core business model, the peer-to-peer lending
platform, facilitates unsecured personal loans ranging from
$1,000 to $40,000.

The LendingClub’s primary value proposition is in connect-
ing borrowers and lenders. With their platform, lenders, or
investors, could browse through a catalogue of loan listings
containing essential information such as loan amount, inter-
est rate, and loan purpose. This allows investors to easily
select the loans they want to finance. For this, investors earn
returns through the interest generated by the loans, while
LendingClub generates its revenue from the transaction fees.

However, in December 2020, the LendingClub made a strate-
gic decision to pivot away from the peer-to-peer lending
model and transition towards more traditional financial ser-
vices. The specific reasons and motivations behind this
strategic shift are beyond the scope of this report. Con-
sequently, the dataset available for analysis in this study is
limited to information collected until the end of 2020 [1].

2. OBJECTIVES
The objective of this report is to explore the LendingClub
dataset using unsupervised and supervised learning tech-
niques. We acknowledge that the scope of this study is
limited, and the results, in its current stage, still cannot
be used to guide decisions. This project serves as an initial
iteration aimed at showcasing the potential of the dataset
and outlining avenues for further research.

We aim to use unsupervised learning techniques, including
dimensionality reduction, anomaly detection, and cluster-
ing, to visualize and identify patterns within the dataset.
Additionally, we use supervised learning techniques, i.e. pre-
dictive modeling, to predict variables of interest to the busi-
ness, such as the likelihood of delinquency and its associated
factors. The specifics of these techniques are discussed in the
next section.

3. PROPOSED METHODOLOGY
The dataset used in this study consists of the accepted loans
dataset, covering loan data from 2007 to the third quarter
of 2020. It comprises approximately 2.9 million rows and
142 columns making it a very rich dataset [2].

The features within the dataset can be broadly categorized
into the following groups:

1. Borrower Information. This includes information about
the borrowers such as their annual income, employ-
ment, home ownership, state of residence. These fea-
tures capture demographic and socioeconomic aspects
of the borrowers.

2. Loan Details. These include attributes related to the
specific loans, including the loan amount, term (rang-
ing from 3 to 5 years), interest rate, purpose of the
loan, and installment amount.

3. Credit History. This comprises factors related to the
credit history of borrowers such as their FICO scores
(a credit scoring system used in the US), number of
delinquencies in the past, and the number of credit
lines. These variables offer insights into the creditwor-
thiness and financial track record of borrowers.

4. Loan Payment Status. This category focuses on the
payment and financial aspects of the loans. It includes
information such as the loan status (e.g., fully paid,
charged off), total payments made by borrowers, and
the remaining principal amount. These variables pro-
vide an overview of the payment behavior and the cur-
rent financial status of borrowers.

3.1 Data Pre-processing
Prior to applying the different learning techniques, we first
had to pre-process the data to make it suitable for modeling.
The pre-processing steps are detailed below:

1. Missing Values Handling.

• Drop columns with more than 90% missing val-
ues: Columns with predominantly missing values
provide limited information and may introduce
low-variance related issues when used in models.
Hence, we dropped any columns with more than
90% missing values.

• Drop rows with missing values: After dropping
the columns with mostly missing values, rows con-
taining missing values were also dropped from the
dataset. While alternative ways to handle miss-
ing values exist, such as imputation, we chose to
simply drop these rows given that the dataset is
large enough.

2. Feature Engineering. The aim of feature engineering
is to create new features that are more informative
or are more readily useful for the models. For this
dataset, the following feature engineering techniques
were applied:

• Extract the year and month from the issue date
column: The issue date column, which represents
the loan issue date, was converted from string to
the date-time format. Then, we extracted the
year and month from this column as separate
features. This transformation allows us to ana-
lyze the temporal patterns and trends in the data
more effectively.

• Convert string columns to numeric: Certain columns,
such as the interest rate, loan term, and employ-
ment length were initially encoded in string for-
mat. We converted these columns to numeric to
make them compatible with the models.

• Make other dates relative to issue date: The last
payment date is another date feature we had to
handle. To make it comparable across the dif-
ferent customers, we calculated the time differ-
ence between the last payment date and the issue
date. This transformation provided us with a rel-
ative measure, enabling us to analyze the timing
of payments with respect to the loan issue date.

3. Categorical Encoding. Categorical features such as state,
loan purpose, and grade were encoded using the one-
hot encoding method. This process converts each cate-
gorical variable into multiple binary variables, enabling
us to represent these categories numerically.

4. Dropping Unnecessary Columns. Columns that do not
add relevant information to this study, such as URL
and zip code, were dropped.

5. Removing Highly Correlated Columns. To avoid rank
deficiencies and multicollinearity issues, we identified
and removed highly correlated columns. Highly corre-
lated variables provide redundant information and can
negatively impact the performance of certain models.

3.2 Unsupervised Learning
In the unsupervised learning component of our study, we ex-
plored three techniques: dimensionality reduction, anomaly
detection, and clustering. This section discusses the specific
methods tried for each technique.

1. Dimensionality Reduction. We experimented using three
common methods for dimensionality reduction: t-SNE
(t-Distributed Stochastic Neighbor Embedding), Isomap,
and PCA (Principal Component Analysis). Due to
computational constraints, we only used a sample size
of 2,500 instances for these methods. This is par-
ticularly true for t-SNE, which is not well-suited for
large datasets. This sampling approach is justifiable
since our primary objective in dimensionality reduc-
tion was to gain initial insights through data visualiza-
tion, rather than an extensive analysis of the complete
dataset.

2. Anomaly Detection. To identify outliers, we tried three
commonly used anomaly detection methods: Isolation
Forest, Local Outlier Factor, and Support Vector Ma-
chines (SVM). We then selected the best method for
outlier detection based on visual inspection of the re-
sults of each method.

3. Clustering. In the clustering analysis, we used dimen-
sionally reduced data obtained from PCA, considering
only the top few principal components. Subsequently,
we applied two widely adopted clustering methods,
namely k-means and agglomerative clustering. For the
k-means clustering, we used the elbow or scree plot in
conjunction with calculating silhouette scores to de-
termine the optimal number of clusters. Meanwhile,
for the agglomerative clustering, we relied on visual
inspection of the dendrogram to determine the most
suitable clustering metric and cluster count.

The aim of these unsupervised learning techniques is to un-
cover patterns, detect anomalies, and identify potential clus-
ters or segments within the dataset. The result of these
methods will be presented in the Results and Discussion
section.

3.3 Supervised Learning
The latter component of the study dealt with performing
supervised learning on the LendingClub dataset. In partic-
ular, we aimed to take a closer look at loan delinquencies and
how well supervised models could predict these instances for
the LendingClub’s loan profiles.

1. Target Variable. In the LendingClub dataset, a column
is included to indicate the number of counts/instances
a profile was tagged to be delinquent in the past 2
years. Delinquency of a borrower’s credit profile is
defined to be exceeding 30 days of non-payment from
the file’s due date. For simplicity, profiles that had at
least one delinquency count in the past 2 years were
flagged as 1 in the target variable. Conversely, files
that have not been delinquent in the past 2 years were
tagged as 0. As the target variable is binary in nature,
the supervised learning problem takes the form of a
binary classification task.

2. Feature Selection. After the target variable has been
defined, features to be used for the modeling were se-
lected. As this study hoped to generate benchmark re-
sults, feature selection was performed mainly through
intuition and domain knowledge by selecting commonly-
understood and interpretable information. The se-
lected features and target variable are all detailed in
Table 1.

3. Binary Classification. Since predicting the derived
loan delinquency flag is essentially a binary classifi-
cation task, there are a handful of supervised learning
models to choose from. For this study, five binary clas-
sification models were studied, namely: Logistic Re-
gression, Ridge Classifier, Linear Discriminant Analy-
sis, Random Forest Classifier, and Extreme Gradient
Boosting.

This section of the study was accomplished with the help of
PyCaret, an open-source, low-code Python machine learn-
ing library that automates machine learning processes and
workflows. As mentioned earlier, five models were chosen
as the supervised models for the binary classification prob-
lem (”xgboost”, ”rf”, ”lr”, ”ridge”, and ”lda”). Prior to
feeding to the AutoML pipeline, the features of the dataset
were subject to minor pre-processing, mainly merging mi-
nority classes into larger classes. Since the prevalence of
delinquencies in the data was around 18%, the target vari-
able was considered to be imbalanced. Class imbalance was
remedied using the SMOTE oversampling technique. Cat-
egorical features were also one-hot encoded, and numerical
columns were normalized using MinMax normalization. The
resulting dataframe was divided into 70% training and 30%
testing data, the former being used in training the super-
vised models. Stratified 10-fold cross-validation was used
for performance evaluation of the models, with the main
metrics used for model selection being the models’ accura-
cies and ROC-AUC scores.

4. RESULTS AND DISCUSSION
In this section, we present and discuss the results obtained
from the aforementioned methods.

4.1 Unsupervised Learning
Dimensionality Reduction
Figure 1 illustrates the two-dimensional representation of
the data using various dimensionality reduction techniques,
namely t-SNE, Isomap, and PCA. These methods were used
to visualize the dataset. To gain further contextual under-
standing, we explored potential patterns by assigning dif-
ferent colors to the data points based on specific variables.
Notably, discernible patterns emerged when categorizing the
data by risk grade (Fig. 1a), loan status (Fig. 1b), and un-
expectedly, by state (Fig. 1c).

The patterns related to risk grade and loan status were con-
sistently observed across all dimensionality reduction ap-
proaches. Particularly, PCA exhibited the most striking
patterns in its second principal component (PC2), which
effectively captured the gradient of loan risk. Higher PC2
values corresponded to loans with elevated risk scores and
unfavorable loan statuses, such as write-offs or late pay-
ments. Moreover, the state variable exhibited discernible
patterns in the t-SNE visualization, where small clusters of
data points with the same state were observed.

Anomaly Detection
Figure 2 displays the results of anomaly detection using Iso-
lation Forest, Local Outlier Factor, and Support Vector Ma-
chines. For visualization purposes, the results are presented
in their first two principal components. Upon visual in-
spection, it is evident that the Local Outlier Factor method
outperformed the other two approaches by accurately iden-
tifying the obvious outliers. In contrast, the remaining two
methods exhibited some false positive results.

Clustering
Clustering techniques were used to identify natural group-
ings within the loan dataset. This segmentation can po-
tentially aid the company in developing personalized and

targeted approaches for different client segments. In this
study, two clustering techniques, namely k-means clustering
and agglomerative clustering, were explored. For both tech-
niques, only the first four principal components of the pre-
processed dataset were used, which collectively accounted
for approximately 98% of the variance.

Figure 3 shows the k-means clustering technique. To deter-
mine the optimal number of clusters, we used the silhouette
plot (Figure 3a). Based on this analysis, the best choice was
determined to be k = 4. The resulting clustering, obtained
with this number of clusters, is displayed in Figure 3b.

On the other hand, agglomerative clustering using Ward’s
method as the distance metric was also employed. The den-
drogram shown in Figure 4a was utilized to determine the
ideal number of clusters, which was found to be k = 3. The
resulting clustering is depicted in Figure 4b. Although other
distance metrics such as centroid and average linkages were
considered (not shown here), Ward’s method was selected
based on visual inspection of the dendrograms. Ward’s
method provided the most balanced groupings compared to
the other methods, which failed provide meaningful segmen-
tation.

Overall, the results obtained from the dimensionality reduc-
tion, anomaly detection, and clustering techniques provide
valuable insights into the structure, anomalies, and distinct
groups present within the dataset. These findings can serve
as a foundation for further analysis and applications such as
as risk assessment, fraud detection, and customer segmen-
tation.

4.2 Supervised Learning
The performance of the five binary classifiers on predicting
loan delinquency in the LendingClub dataset are summa-
rized in Figure 5. We find that XGBoost performed best
among all models, having an accuracy of 0.8158 and ROC-
AUC score of 0.6238. Using the same metrics as basis, the
random forest classifier is the next best performing model.
For both XGBoost and Random Forest, their biggest dis-
advantage is their significantly longer training times. The
three remaining classifiers, Logistic Regression, Ridge Re-
gression, and Linear Discriminant Analysis, showed low to
moderate performance across all metrics. However, these
three models possessed shorter training times compared to
the other, tree-based algorithms. For business use-cases, al-
though the XGBoost classifier has a relatively high training
time compared to most models, it more than makes up for
it with its superior accuracy and ROC-AUC metrics scores.

While we arrive at XGBoost being the best model in terms
of accuracy and ROC-AUC score, it is far from being perfect.
After fitting the model once more with the training data, the
trained model showed only minimal improvements for the
two metrics. A visual representation of the ROC curve for
the XGBoost classifier is given by Figure 6a. The confusion
matrix in Figure 6b shows the counts of predicted classes
against the true delinquent cases. The model is shown to
extremely under-predict true delinquents, resulting in a low
recall value.

Lastly, feature importance was calculated for the classifier to

Variable Type Name Description Data Type

Feature loan amnt
The listed amount of the loan

applied for by the borrower
Integer

Feature term The number of payments on the loan Categorical

Feature int rate Interest Rate on the loan Numeric

Feature grade LendingClub assigned loan grade Categorical

Feature home ownership

The home ownership status provided

by the borrower during registration

or obtained from the credit report

Categorical

Feature annual inc

The self-reported annual income

provided by the borrower

during registration

Numeric

Feature purpose
A category provided by the borrower

for the loan request
Categorical

Feature emp length Employment length in years Integer

Target flag delinq2yrs

Having at least one delinquency

(>30 days non-payment past due date)

count in the past 2 years

Flag

Table 1: The target variable and features used for supervised learning.

determine the most significant features that improve predic-
tive performance. The one-hot encoded LendingClub grades
A and C were shown to have high variable importances
among the training features. Profiles with owners that mort-
gaged or rented their homes also significantly drove model
performance. These results offer potential insights on how
well LendingClub assigned loan grades and even home own-
ership types are able to predict the likelihood of a loan profile
to have an instance of delinquency.

5. CONCLUSION
In conclusion, this project explored the LendingClub dataset
using unsupervised and supervised learning techniques. Data
preprocessing and feature engineering techniques were ap-
plied to clean and transform the dataset, ensuring the qual-
ity and reliability of the analysis.

Unsupervised learning techniques, such as dimensionality re-
duction, clustering, and anomaly detection, provided valu-
able insights into the underlying patterns and anomalies
within the dataset. These techniques allowed for visualiza-
tions and a deeper understanding of the data structure.

Supervised learning methods were tested to predict loan
delinquencies using features extracted from the loan profiles
in the dataset. With the aid of the AutoML library Py-
Caret, binary classification on delinquent loan profiles was
studied using 5 supervised learning models. The XGBoost
classifier was shown to have the highest accuracy and ROC-
AUC scores compared to 4 other binary classifiers, albeit
with a relatively high training time. Additionally, Lend-
ingClub loan grades and home ownership type were seen to

have significant impact in driving model performance.

6. RECOMMENDATIONS
This project serves as an exploratory analysis, and there are
several avenues for further research and improvement. Here
are some recommendations for future work:

1. Further Feature Engineering : Explore additional fea-
ture engineering techniques to enhance the predictive
power of the models. Consider incorporating exter-
nal data sources to capture more nuanced information
about borrowers and loan characteristics.

2. Feature Selection: Perform rigorous feature selection
to identify the most influential features for loan delin-
quency prediction. Utilize techniques such as feature
importance, correlation analysis, or step-wise selection
to identify the most relevant features and eliminate
any redundant or irrelevant ones.

3. Hyperparameter Tuning and Model Optimization: Con-
duct thorough hyperparameter tuning and model op-
timization to improve the precision and overall perfor-
mance of the predictive models. Utilize techniques like
grid search, random search, or Bayesian optimization
to find the optimal set of hyperparameters for each
model.

4. Deeper Analysis: Analyze specific loan characteristics,
borrower profiles, or economic factors to gain deeper
insights into loan delinquency patterns. Investigate
how factors such as loan amount, interest rate, loan

purpose, borrower income, credit history, and economic
indicators impact loan delinquencies. This analysis
can provide valuable insights for risk assessment and
decision-making.

Overall, this initial exploration of the LendingClub dataset
demonstrates its potential for further analysis and refine-
ment. By applying advanced machine learning techniques
and conducting deeper investigations into loan character-
istics and borrower profiles, we can gain valuable insights
into loan delinquency patterns and improve risk assessment
in the lending industry.

7. REFERENCES
[1] “Lendingclub,”

https://en.wikipedia.org/wiki/LendingClub, Accessed
2023, wikipedia Article.

[2] Lending Club, “Lending club 2007-2020q3,”
https://www.kaggle.com/datasets/ethon0426/lending-
club-20072020q1, 2020, kaggle Dataset.

(a) t-SNE colored by risk grade

(b) Isomap colored by loan status

(c) PCA colored by state

Figure 1: Dimensionality reduction techniques colored by risk grade, loan status, and state. The figures show the results from
t-SNE (a), Isomap (b), and PCA (c), respectively.

Figure 2: Results of Anomaly Detection using Isolation Forest, Local Outlier Factor, and Support Vector Machines

(a) Silhouette plot for determining the optimal number of clusters (b) K-means clustering results with k = 4

Figure 3: Results of K-means Clustering. The optimal number of clusters is k = 4, as shown in Figure 3b.

(a) Dendrogram for determining the best number of clusters (b) Agglomerative clustering results with k = 3

Figure 4: Results of Agglomerative Clustering. The best number of clusters is k = 3, as shown in Figure 4b.

Figure 5: Performance metrics of the 5 binary classification models.

(a) ROC-AUC curve of the XGBoost classifier (b) Confusion matrix of the XGBoost classifier

Figure 6: Model evaluation plots of the XGBoost classifier fit with training data.

Figure 7: Feature importance plot of the training features.

Appendix A - Preprocessing

June 24, 2023

In []: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

In []: accepted_df = pd.read_csv("data/accepted_2007_to_2020.csv", index_col=0)
rejected_df = pd.read_csv("data/rejected_2007_to_2018Q4.csv")

1 Accepted Loans

Note: Looking at columns with the same number of nulls gives us an idea of which variables were
"generated" together.

In []: accepted_df = accepted_df[~accepted_df.loan_amnt.isna()]

In []: df = accepted_df.set_index("id")

Handle missing values
df.dropna(

axis=1, thresh=len(df) * 0.9, inplace=True
) # Drop columns with more than 90% missing values
df.dropna(inplace=True) # Drop rows with any missing values

Feature engineering
df["issue_d"] = pd.to_datetime(df["issue_d"]) # Convert issue date to datetime
df["year"] = df["issue_d"].dt.year # Extract year from issue date
df["month"] = df["issue_d"].dt.month # Extract month from issue date

Convert int_rate to numerical
df["int_rate"] = df["int_rate"].str.rstrip("%").astype("float") / 100.0
df["term"] = df["term"].apply(lambda x: int(x.split()[0]))
df["emp_length"] = df["emp_length"].str.extract(r"(\d+)")
df["emp_length"] = pd.to_numeric(df["emp_length"], errors="coerce")
Feature engineering - Extract year and month from issue date
df["issue_d"] = pd.to_datetime(df["issue_d"])
df["issue_year"] = df["issue_d"].dt.year

1

Calculate credit history length
df["earliest_cr_line"] = pd.to_datetime(df["earliest_cr_line"])
df["credit_history_length"] = df["issue_year"] - df["earliest_cr_line"].dt.year
Convert revol_util to numeric
df["revol_util"] = df["revol_util"].str.rstrip("%").astype("float") / 100.0

Calculate the difference between last payment and issue date in years
df["last_pymnt_d"] = pd.to_datetime(df["last_pymnt_d"])
df["last_pymnt_issue_diff"] = (df["last_pymnt_d"] - df["issue_d"]).dt.days // 365

Calculate the difference between last credit pull and issue date in years
df["last_credit_pull_d"] = pd.to_datetime(df["last_credit_pull_d"])
df["last_credit_pull_issue_diff"] = (

df["last_credit_pull_d"] - df["issue_d"]
).dt.days // 365

Convert "debt_settlement_flag" and "hardship_flag" to numeric
df["debt_settlement_flag"] = (df["debt_settlement_flag"] == "Y").astype(int)
df["hardship_flag"] = (df["hardship_flag"] == "Y").astype(int)

I made issue year categorical to capture trends, e.g. loans back in 2008 might behave differently compared to loans in 2020.
categorical_cols = [

"grade",
"sub_grade",
"home_ownership",
"verification_status",
"purpose",
"addr_state",
"initial_list_status",
"loan_status",
"issue_year",
"application_type",

]
df = pd.get_dummies(df, columns=categorical_cols)

columns_to_drop = [
"emp_title",
"url",
"title",
"zip_code",
"issue_d",
"last_pymnt_d",
"last_credit_pull_d",
"pymnt_plan",
"earliest_cr_line",

]

2

df.drop(columns=columns_to_drop, inplace=True)

In []: # check that everything is numeric
df.dtypes.value_counts()

In []: # check that there are no null values
df.isna().sum().value_counts()

In []: df.shape

In []: df.to_pickle("data/preprocessed_df.pickle")

3

Appendix B - Unsupervised Learning

June 24, 2023

In []: import os
import pickle

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm

import pycaret
pycaret.__version__

from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.decomposition import PCA, KernelPCA
from sklearn.manifold import TSNE, Isomap
from sklearn.metrics import silhouette_score

In []: df = pd.read_pickle("data/df_filtered.pickle")
normed_df = pd.DataFrame(

StandardScaler().fit_transform(df), columns=df.columns, index=df.index
)

In []: df_raw = pd.read_pickle("data/accepted_df_raw.pickle")

Methods to condsider: - PCA - Kernel PCA - Locally Linear Embedding (LLE) - t-SNE - K-
Means - Hierarchical Clustering - DBSCAN - Gaussain Mixture Models - Kernel Density Estima-
tion (KDE) - One-Class SVM

1 Dimensionality Reduction

In []: # Original code to obtain transformed data
df_sample = normed_df.sample(2500, random_state=2023)

tsne = TSNE(n_components=2, perplexity=30, random_state=42)
isomap = Isomap(n_components=2, n_neighbors=10)
pca = PCA(n_components=2)

1

df_tsne = tsne.fit_transform(df_sample)
df_isomap = isomap.fit_transform(df_sample)
df_pca = pca.fit_transform(df_sample)

fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(15, 5))

axs[0].scatter(df_tsne[:, 0], df_tsne[:, 1], color="black")
axs[0].set_title("t-SNE")

axs[1].scatter(df_isomap[:, 0], df_isomap[:, 1], color="black")
axs[1].set_title("Isomap")

axs[2].scatter(df_pca[:, 0], df_pca[:, 1], color="black")
axs[2].set_title("PCA")

plt.tight_layout()
plt.show()

In []: columns_of_interest = ["grade", "loan_status", "addr_state"]
df_sample = df_sample.join(df_raw[columns_of_interest])

In []: import matplotlib.pyplot as plt
import matplotlib as mpl
Convert the categorical grades to numerical labels
label_encoder = LabelEncoder()
encoded_grades = label_encoder.fit_transform(df_sample["grade"])
alpha = 0.5

fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(15, 5))

Reverse the color map
cmap = plt.cm.RdYlGn
reversed_cmap = cmap.reversed()

Scatter plot for t-SNE
scatter_tsne = axs[0].scatter(

df_tsne[:, 0], df_tsne[:, 1], c=encoded_grades, cmap=reversed_cmap, alpha=alpha
)
axs[0].set_title("t-SNE")

Scatter plot for Isomap
scatter_isomap = axs[1].scatter(

df_isomap[:, 0], df_isomap[:, 1], c=encoded_grades, cmap=reversed_cmap, alpha=alpha
)
axs[1].set_title("Isomap")

Scatter plot for PCA
scatter_pca = axs[2].scatter(

2

df_pca[:, 0], df_pca[:, 1], c=encoded_grades, cmap=reversed_cmap, alpha=alpha
)
axs[2].set_title("PCA")

Create a legend
legend_labels = label_encoder.classes_
legend_elements = [plt.Line2D([0], [0], marker='o', color='w', label=label,

markerfacecolor=reversed_cmap(i / len(legend_labels)), markersize=10) for i, label in
enumerate(legend_labels)]

fig.legend(legend_elements, legend_labels, loc='center', bbox_to_anchor=(0.5, -0.1),
ncol=len(legend_labels))

plt.show()

In []: import matplotlib.pyplot as plt
import matplotlib as mpl

Convert the categorical grades to numerical labels
label_encoder = LabelEncoder()
label_encoder.classes_ = np.append(
label_encoder.classes_[1:], label_encoder.classes_[0]
)
encoded_grades = (label_encoder.fit_transform(df_sample["loan_status"]) - 1) % 5
alpha = 0.5

fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(15, 5))

Reverse the color map
cmap = plt.cm.RdYlGn
reversed_cmap = cmap.reversed()

Scatter plot for t-SNE
scatter_tsne = axs[0].scatter(

df_tsne[:, 0], df_tsne[:, 1], c=encoded_grades, cmap=reversed_cmap, alpha=alpha
)
axs[0].set_title("t-SNE")

Scatter plot for Isomap
scatter_isomap = axs[1].scatter(

df_isomap[:, 0], df_isomap[:, 1], c=encoded_grades, cmap=reversed_cmap, alpha=alpha
)
axs[1].set_title("Isomap")

Scatter plot for PCA
scatter_pca = axs[2].scatter(

df_pca[:, 0], df_pca[:, 1], c=encoded_grades, cmap=reversed_cmap, alpha=alpha
)
axs[2].set_title("PCA")

3

Create a legend
legend_labels = np.append(label_encoder.classes_[1:], label_encoder.classes_[0])
legend_elements = [

plt.Line2D(
[0],
[0],
marker="o",
color="w",
label=label,
markerfacecolor=reversed_cmap(i / len(legend_labels)),
markersize=10,

)
for i, label in enumerate(legend_labels)

]
fig.legend(

legend_elements,
legend_labels,
loc="center",
bbox_to_anchor=(0.5, -0.1),
ncol=len(legend_labels),

)

plt.show()

In []: import matplotlib.pyplot as plt
import matplotlib as mpl

Convert the categorical grades to numerical labels
label_encoder = LabelEncoder()
label_encoder.classes_ = np.append(
label_encoder.classes_[1:], label_encoder.classes_[0]
)
encoded_grades = label_encoder.fit_transform(df_sample["addr_state"])
alpha = 0.5

fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(15, 5))

Reverse the color map
cmap = plt.cm.prism
reversed_cmap = cmap.reversed()

Scatter plot for t-SNE
scatter_tsne = axs[0].scatter(

df_tsne[:, 0], df_tsne[:, 1], c=encoded_grades, cmap=reversed_cmap, alpha=alpha
)
axs[0].set_title("t-SNE")

4

Scatter plot for Isomap
scatter_isomap = axs[1].scatter(

df_isomap[:, 0], df_isomap[:, 1], c=encoded_grades, cmap=reversed_cmap, alpha=alpha
)
axs[1].set_title("Isomap")

Scatter plot for PCA
scatter_pca = axs[2].scatter(

df_pca[:, 0], df_pca[:, 1], c=encoded_grades, cmap=reversed_cmap, alpha=alpha
)
axs[2].set_title("PCA")

Create a legend
legend_labels = label_encoder.classes_
legend_elements = [

plt.Line2D(
[0],
[0],
marker="o",
color="w",
label=label,
markerfacecolor=reversed_cmap(i / len(legend_labels)),
markersize=10,

)
for i, label in enumerate(legend_labels)

]
fig.legend(
legend_elements,
legend_labels,
loc="center",
bbox_to_anchor=(0.5, -0.1),
ncol=len(legend_labels),
)

plt.show()

In []: df = pd.read_pickle("data/df_filtered.pickle").sample(10000, random_state=2023)

Perform PCA
pca = PCA(n_components=10)
pca.fit(df)

Obtain the explained variance ratio
explained_variance_ratio = pca.explained_variance_ratio_

Plot the explained variance ratio
plt.plot(np.cumsum(explained_variance_ratio))
plt.xlabel("Number of Principal Components")

5

plt.ylabel("Cumulative Explained Variance")
plt.title("Explained Variance Ratio")

Determine the optimal number of principal components
cumulative_variance = np.cumsum(explained_variance_ratio)
threshold = 0.95 # Set your desired threshold for explained variance

Find the index where cumulative variance exceeds the threshold
num_components = np.argmax(cumulative_variance > threshold) + 1

Perform PCA with the optimal number of components
pca = PCA(n_components=num_components)
df_transformed = pca.fit_transform(df)

Access the principal components
principal_components = pd.DataFrame(

data=df_transformed, columns=[f"PC{i}" for i in range(num_components)]
)

Access the explained variance ratio for each component
component_variance_ratio = pd.DataFrame(

data=explained_variance_ratio[:num_components], columns=["Explained Variance Ratio"]
)

Print the explained variance ratio for each component
print(component_variance_ratio)
Plot dotted lines
plt.axvline(x=num_components - 1, color="r", linestyle="--")
plt.axhline(y=cumulative_variance[num_components - 1], color="r", linestyle="--")

Add label for explained variance
plt.text(

num_components - 0.75,
cumulative_variance[num_components] - 0.03,
f"{cumulative_variance[num_components-1]*100:.2f}%",
color="r",

)

plt.show()
Print the selected number of components
print(f"Selected number of components: {num_components}")

In []: pca = PCA(n_components=4)
df_transformed = pca.fit_transform(df)

6

2 Anomaly Detection

In []: from pycaret.anomaly import *

Load the dataset (replace 'data_array' with your NumPy array)
data = df_transformed

Convert the NumPy array to a DataFrame
df = pd.DataFrame(data, columns=[f"PC{i}" for i in range(1, 5)])

Initialize the PyCaret setup
anomaly_setup = setup(df, normalize=True)

Create and evaluate the models
iforest = create_model("iforest")
lof = create_model("lof")
svm = create_model("svm")

Get the decision scores or probabilities
iforest_scores = iforest.decision_scores_
lof_scores = lof.decision_scores_
svm_scores = svm.decision_scores_

Manually adjust the anomaly detection thresholds
iforest_threshold = 0.2 # Adjust the threshold value as per your requirement
lof_threshold = 10 # Adjust the threshold value as per your requirement
svm_threshold = 0 # Adjust the threshold value as per your requirement

Generate the predictions based on the adjusted thresholds
iforest_preds = iforest_scores > iforest_threshold
lof_preds = lof_scores > lof_threshold
svm_preds = svm_scores < svm_threshold

Plotting the anomalies
plt.figure(figsize=(15, 5))

Plotting Isolation Forest
plt.subplot(1, 3, 1)
sns.scatterplot(data=df, x="PC1", y="PC2", color="gray")
sns.scatterplot(data=df[iforest_preds], x="PC1", y="PC2", color="red")
plt.title("Isolation Forest")

Plotting Local Outlier Factor
plt.subplot(1, 3, 2)
sns.scatterplot(data=df, x="PC1", y="PC2", color="gray")
sns.scatterplot(data=df[lof_preds], x="PC1", y="PC2", color="red")
plt.title("Local Outlier Factor")

7

Plotting Support Vector Machines
plt.subplot(1, 3, 3)
sns.scatterplot(data=df, x="PC1", y="PC2", color="gray")
sns.scatterplot(data=df[svm_preds], x="PC1", y="PC2", color="red")
plt.title("Support Vector Machines")

plt.tight_layout()
plt.show()

In []: # Plotting the anomalies
plt.figure(figsize=(15, 5))

Plotting Isolation Forest
plt.subplot(1, 3, 1)
sns.scatterplot(data=df, x="PC1", y="PC3", color="gray")
sns.scatterplot(data=df[iforest_preds], x="PC1", y="PC3", color="red")
plt.title("Isolation Forest")

Plotting Local Outlier Factor
plt.subplot(1, 3, 2)
sns.scatterplot(data=df, x="PC1", y="PC3", color="gray")
sns.scatterplot(data=df[lof_preds], x="PC1", y="PC3", color="red")
plt.title("Local Outlier Factor")

Plotting Support Vector Machines
plt.subplot(1, 3, 3)
sns.scatterplot(data=df, x="PC1", y="PC3", color="gray")
sns.scatterplot(data=df[svm_preds], x="PC1", y="PC3", color="red")
plt.title("Support Vector Machines")

plt.tight_layout()
plt.show()

In []: # Plotting the anomalies
plt.figure(figsize=(15, 5))

Plotting Isolation Forest
plt.subplot(1, 3, 1)
sns.scatterplot(data=df, x="PC2", y="PC3", color="gray")
sns.scatterplot(data=df[iforest_preds], x="PC2", y="PC3", color="red")
plt.title("Isolation Forest")

Plotting Local Outlier Factor
plt.subplot(1, 3, 2)
sns.scatterplot(data=df, x="PC2", y="PC3", color="gray")
sns.scatterplot(data=df[lof_preds], x="PC2", y="PC3", color="red")
plt.title("Local Outlier Factor")

8

Plotting Support Vector Machines
plt.subplot(1, 3, 3)
sns.scatterplot(data=df, x="PC2", y="PC3", color="gray")
sns.scatterplot(data=df[svm_preds], x="PC2", y="PC3", color="red")
plt.title("Support Vector Machines")

plt.tight_layout()
plt.show()

3 Clustering

In []: from pycaret.clustering import *

In []: df_transformed = df_transformed[~lof_preds]

3.1 K-Means

In []: # df_sample = df.sample(2500, random_state=2023)
s = setup(df_transformed, session_id=221, normalize=True)

In []: models()

In []: kmeans = create_model("kmeans")

In []: plot_model(kmeans, plot="elbow")

In []: # Define a list of cluster numbers (k) to evaluate
cluster_nums = range(2,11)

Initialize empty lists to store silhouette scores and plot coordinates
silhouette_scores = []
x_coords = []
y_coords = []

Iterate over cluster numbers
for k in tqdm(cluster_nums):

Create a clustering model with the current k
kmeans = create_model('kmeans', num_clusters=k, verbose=False)

Assign clusters to the data points
assign_clusters = assign_model(kmeans)

Extract the cluster labels
labels = assign_clusters['Cluster']

Calculate the silhouette score
score = silhouette_score(df_transformed, labels)

9

Store the silhouette score for the current k
silhouette_scores.append(score)

Store coordinates for plotting
x_coords.append(k)
y_coords.append(score)

Plot the silhouette scores
plt.plot(x_coords, y_coords, marker='o')
plt.xlabel('Number of clusters (k)')
plt.ylabel('Silhouette Score')
plt.title('Silhouette Score per Cluster Number')
plt.show()

In []: kmeans = create_model("kmeans", num_clusters=4)
plot_model(kmeans, plot="cluster")

3.2 Agglomerative Clustering

In []: import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import AgglomerativeClustering
from scipy.cluster.hierarchy import dendrogram, linkage
import matplotlib.pyplot as plt

Normalize the dataframe
scaler = StandardScaler()
df_normalized = pd.DataFrame(scaler.fit_transform(df_transformed)).sample(100)

Perform agglomerative clustering with centroid linkage
model_centroid = linkage(df_normalized, method='centroid')

Perform agglomerative clustering with average linkage
model_average = linkage(df_normalized, method='average')

Perform agglomerative clustering with Ward's method
model_ward = linkage(df_normalized, method='ward')

Plot the dendrogram for centroid linkage
plt.figure(figsize=(10, 6))
dendrogram(model_centroid, labels=labels_centroid, leaf_font_size=10)
plt.title("Dendrogram - Centroid Linkage")
plt.xlabel("Sample Index")
plt.ylabel("Distance")
plt.show()

Plot the dendrogram for average linkage
plt.figure(figsize=(10, 6))

10

dendrogram(model_average, labels=labels_average, leaf_font_size=10)
plt.title("Dendrogram - Average Linkage")
plt.xlabel("Sample Index")
plt.ylabel("Distance")
plt.show()

Plot the dendrogram for Ward's method
plt.figure(figsize=(10, 6))
dendrogram(model_ward, labels=labels_ward, leaf_font_size=10)
plt.title("Dendrogram - Ward's Method")
plt.xlabel("Sample Index")
plt.ylabel("Distance")
plt.show()

In []: hclust = create_model("hclust", linkage="ward", num_clusters=3)

In []: plot_model(hclust, "cluster")

11

Appendix C - Supervised Learning

June 25, 2023

In []: import pandas as pd
import numpy as np

from pycaret.classification import *

In []: # Bug with latest version of pycaret - need to revert to old version of sklearn
#!pip install --user --force-reinstall scikit-learn==1.2.1

In []: raw_df = pd.read_csv("./Loan_status_2007-2020Q3.gzip", compression=None, low_memory=False)

0.0.1 I. Preprocessing Step

In []: accepted_df = raw_df[~raw_df.loan_amnt.isna()]

In []: df = accepted_df.copy()

In []: # Drop columns with more than 90% missing values
df.dropna(axis=1, thresh=len(df) * 0.9, inplace=True)

Drop rows with any missing values
df.dropna(inplace=True)

In []: # Interest Rate
df["int_rate"] = df["int_rate"].str.rstrip("%").astype("float") / 100.0

Employment Length
df["emp_length"] = df["emp_length"].str.extract(r"(\d+)")
df["emp_length"] = pd.to_numeric(df["emp_length"], errors="coerce")

In []: # Application Purpose
df["purpose"] = df["purpose"].str.replace("_", " ")
df["purpose"] = df["purpose"].str.title()

In []: # Application Purpose
df["purpose"] = np.where(df["purpose"] == "Car", "Major Purchase", df["purpose"])
df["purpose"] = np.where(df["purpose"] == "Vacation", "Major Purchase", df["purpose"])
df["purpose"] = np.where(df["purpose"] == "Small Business", "Major Purchase", df["purpose"])
df["purpose"] = np.where(df["purpose"] == "Wedding", "Major Purchase", df["purpose"])

1

df["purpose"] = np.where(df["purpose"] == "Moving", "Other", df["purpose"])
df["purpose"] = np.where(df["purpose"] == "House", "Other", df["purpose"])
df["purpose"] = np.where(df["purpose"] == "House", "Other", df["purpose"])
df["purpose"] = np.where(df["purpose"] == "Educational", "Other", df["purpose"])
df["purpose"] = np.where(df["purpose"] == "Renewable Energy", "Other", df["purpose"])
df["purpose"] = np.where(df["purpose"] == "Medical", "Other", df["purpose"])

In []: # Grade
df["grade"] = np.where(df["grade"] == "D", "D and Below", df["grade"])
df["grade"] = np.where(df["grade"] == "E", "D and Below", df["grade"])
df["grade"] = np.where(df["grade"] == "F", "D and Below", df["grade"])
df["grade"] = np.where(df["grade"] == "G", "D and Below", df["grade"])

In []: # Home Ownership Type
df["home_ownership"] = np.where(df["home_ownership"] == "ANY", "OTHER", df["home_ownership"])
df["home_ownership"] = np.where(df["home_ownership"] == "NONE", "OTHER", df["home_ownership"])

0.0.2 II. Supervised Learning - Set Up

In []: # Target: Delinquent in last 2 years (flag)
df["flag_delinq2yrs"] = np.where(df["delinq_2yrs"] == 0, 0, 1)

In []: supervised_features = [
"loan_amnt",
"term",
"int_rate",
"grade",
"home_ownership",
"annual_inc",
"purpose",
"emp_length",
"flag_delinq2yrs"

]

In []: df_fit = df[supervised_features]

In []: # home_ownership = "OTHER" is 0.1%
df_fit = df_fit[df_fit["home_ownership"] != "OTHER"]

In []: df_fit.head()

In []: get_config("X_train_transformed")

In []: # Check if target variable is balanced or not
df_fit["flag_delinq2yrs"].mean()

In []: supervised_setup = setup(
df_fit,
target = 'flag_delinq2yrs',

2

categorical_features = ["term", "grade", "home_ownership", "purpose"],
normalize = True,
normalize_method = "minmax",
fix_imbalance = True,
session_id = 221

)

0.0.3 III. Supervised Learning - Training

In []: supervised_models = compare_models(include = ["lr", "ridge", "lda", "xgboost", "rf"], sort = "Accuracy")

In []: save_compare_models = pull()
save_compare_models.reset_index().to_csv("table_compare_supervised_models.csv", index=False)

In []: print(supervised_models)

In []: xgb = create_model("xgboost")

In []: save_model(xgb, 'xgb_model')
print(xgb)

In []: xgb = load_model("xgb_model")

0.0.4 IV. Supervised Learning - Performance Metrics

In []: evaluate_model(xgb)

In []: evaluate_model(xgb)

In []: evaluate_model(xgb)

In []: evaluate_model(xgb)

In []: evaluate_model(xgb)

0.0.5 V. Supervised Learning - Hyperparameter Tuning

In []: #tuned_xgb = tune_model(xgb)

In []: #save_model(tuned_xgb, 'tuned_xgb_model')
#print(tuned_xgb)

In []: #evaluate_model(tuned_xgb)

In []: #evaluate_model(tuned_xgb)

3

